Wangjae You wvy5021@psu.edu

September 26, 2014

Dr. Aly Said aus59@psu.edu 210 Engineering Unit A

Dear Dr. Aly Said,

This report was prepared to be summated for Structural Technical Report 2 for AE 481W.

Structural Technical Report 2 includes a comprehensive design evaluation of structural system of the building. This analysis includes calculations of roof loads, floor loads, exterior wall loads, snow loads, wind loads and seismic loads. The report was prepared using a combination of hand calculations and spreadsheets.

Thank you for reviewing this report and I look forward to discussing with you in the future.

Sincerely,

Wangjae You

Enclosed: Structural Technical Report 2

Structural Technical Report 2

LIFE SCIENCES BUILDING BUILDING CODES, SPECIFICATIONS, AND LOADS

Prepared for: Dr. Aly M. Said | Dr. Thomas Boothby | Professor Kevin Parfitt | Dr. Charles D. Cox Prepared by: Wangjae You | Structural Option September 26, 2014

Table of Contents

Building Abstract
Executive Summary
Site Plan and Location Plan
Documents Referenced
Gravity Loads
Typical Roof Bay
Roof Snow Load
Greenhouse Roor
Typical Floor Bay
Typical Exterior Wall Detail
Table of Non-Typical Load
Snow Load
Wind Loads
Summary of Wind Pressure in Roof
Summary of Wind Pressure in Walls
Graphic – Wind Pressure vs. height on the Building
Seismic Loads
Graphic – Seismic Loads vs. height on the Building

LIFE SCIENCES BUILDING - NORTH EAST OF THE U.S.

General Information

Full Height: 91 ft Number of Stories: 5 stories Size: 174,500 square-foot Cost: \$91.6 million Date of Construction: September 2008 - August 2011 Project Delivery Method: Design-bid-build

Project Team

Owner: Education Institutes Architect: Bohlin Cywinski Jackson Structural: Ryan-Biggs Associates, P.C. MEP/Lighting: vanZelm Heywood & Shadford, Inc. Construction: Bond Brothers, Inc Project Manager: PML Project Management Sustainability: Atelier Ten

Project Sponsor: Ryan-Biggs Associates, P.C.

Architecture

The main concept of design in floor plan is to promote the interaction of idea and technique between people using the building. To place laboratories in the first floor provides easy accessibility to whom uses this building.

Structural Systems

Foundation: cast-in-place concrete spread and strip footings

Framing: Structural Steel Frame with composite concrete slabs on metal deck

Lateral: Structural Steel Braced Frames

Sustainability Features

This building is certified as a LEED Platinum. Greenhouse on the roof improves building performance in energy throughout the year.

Mechanical

**Mechanical drawings have been requested to Ryan-Biggs and waiting for the response.

Electrical/Lighting

**Electrical drawings have been requested to Ryan-Biggs and waiting for the response.

EXECUTIVE SUMMARY

Life Sciences Building is located in north east of the United States (A generic information of building is requested by the owner). The goal of this project was to create a national model of sustainable design for laboratory buildings and the building was awarded LEED Platinum. The building is a 5 stories and 174,500 square feet. The geometry of building is L-shape and considered as long span structure. The building is divided into three section and each section perform its own function. A greenhouse is placed in the roof to serve research space and provide building energy performance. This technical report provides the summary of the structural existing conditions and explores potential alternatives of the system, especially in structure, throughout the course.

The foundation system consists of cast-in concrete spread and strip footings to support a system of wide flange steel columns. The building is design as a composite steel floor system. Typically, 7 1/2" reinforced concrete slab on 3" 20 gauge metal deck supports floor loads and transfer them to wide flange beams with shear stud connection. Web openings in wide flange steel beams resolve the coordination issues with mechanical, electrical and plumbing systems.

The lateral system is designed by structural steel braced frames. Due to architectural versatility, the layout of braced frames is carefully determined. Hollow Structural Section (HSS) is used as braces with varying its thickness according to the lateral loads.

Life Sciences Building was designed in accordance with the states codes, which is compliant to the International Building Code 2006 Edition (IBC 2006) and American Society of Civil Engineering (ASCE) 7-05 for load provisions. Due to the placement of a greenhouse in the roof, the structure was carefully considered in larger design loads. The coordination of MEP systems and structure system was a challenge of the design

SITE PLAN AND LOCATION PLAN

Figure 1 | Building Perspective from North

Figure 2 | Buildings Site Plan

DOCUMENTS REFERENCED

Codes and Standards

International Code Council International Code Council 2006 Editions International Building Code 2000 Edition

American Society of Civil Engineering

ASCE 7-05 - Minimum Design Loads of Buildings and Other Structures ASCE 7-10 - Minimum Design Loads of Buildings and Other Structures

Vulcraft Deck Catalog

Construction Documents and Specifications of the Project

New York State Department of Transportation NYSDOT - Standard Specification for Construction and Materials

GRAVITY LOADS

0	Typical Roof Day Loading
	_ ROOFING NEMBRANG
	- "12" LOVER BOARD
	- 6" RIGID INSULATION
	RODF MEMAL PELL
	Dead Load
	· ROOFME MEMBRANE = 2 pt
	· 1/2" COVER BOARD = 2pt
	· 6" RIGID INSULATION = 1.500 × 6" = 9 pst
	· 3" 20 GAGE METAL DECL - 2.71 pet
	· FRAMING ALLOWANCE = 10 put
	· MISC - MEP EQUIP = 5 ps
	- LIGHTING - 5 pot.
	- CEILING - Spst
	TOTAL DEAD LOAD = 48.71 pof
	VS.
	LOAD USED IN DESIGNE 30 pst
	tire Load
	· Roof Live Lood = 20 psf (ASCE 7-05 TABLE U-1)
	. No design toot live load was provided.

ROOF SNOW LOAD

_

GREENHOUSE FLOOR

TYPICAL FLOOR BAY

TYPICAL EXTERIOR WALL DETAIL

TABLE OF NON-TYPICAL LOAD

Table of Non-typical land-· ROOF GARDENS & TERRACES = 170 pst · ROOF OVER CONNECTOR = 200 pst · LANGEUTRATED LIVE LOADS - FLEORS, RODF GARDENS ADD TERACES = 2000 160 300 - STAIR TREADS 162 300 160 - RODF

SNOW LOAD

Show Drift
If
$$h_{e}/h_{e} < 0.2$$
, $drift looks hot applicable:
 $he: 19 - 1.927 = 17.0725$
 $P_{S} = (a \cdot f)^{2}$
 $(as = 1.0 \leq depe of the growthese truss$
 $P_{S} = (1.5)(42)$.
 $= 42 p_{S} f$.
 $hb = P_{S}/g$ $P_{S} = u2 p_{s} f$
 $Y = 0.13 p_{T} + 144$
 $= 42/a_{1.8} = 0.13 (bo) + 144$
 $= 1.927$ $= 21.8 p_{S} f < 30 L$
 $hc/h = 17.071 \cdot g_{2} f = P.86 > 0.2$
 $i = 50 \text{ event}$
 $P_{G} = 60 p_{S} \Rightarrow hd = 0.43 \sqrt{J_{H}} \cdot \sqrt{J_{G}} + 15$
 $lu = 52.84$ $= 0.43 (35.3)^{16} (60 + 10)^{14} - 15$
 $lu = 362.84$ $= 2.42$
 $P_{g} = 60 p_{S} \Rightarrow hd = 0.43 (35.3)^{16} (60 + 10)^{14} - 15$
 $lu = 36.364$ $= 2.62$
 $Drift Lond$
 $hd < her, $3.14 < 171.073$
 $P_{d} = 8 \cdot hd = 0.43 (35.452, p_{s}f$$$

WIND LOADS

Wind Load. ASCE 7-05 Section 6.5 - Method 2 - Analytical Procedure Basic Wind Speed: V= 90 mph (Figure 6-1) Wind Directionality Factor, Kalo Kd= 0.85 (Table 6-4) => Buildings : Main Wind Force Resisting System Importance Factor, J .: J = 1.15 (Table 6-1.) = Building Occupancy Calegory I Exposure Category: Exposure B. Topographic Factor, K2t: Kat = 1.0 (\$6.5.7.2)

$$\begin{aligned} \frac{\Delta uvt}{\Delta Het} \frac{\mathcal{E}Het}{\mathcal{E}_{a}} \frac{\mathcal{E}_{a}}{\mathcal{E}_{a}} \frac{\mathcal{E}_{a}}{\mathcal{E}_{a}}} \frac{\mathcal{E}_{a}}{\mathcal{E}_{a}} \frac{\mathcal{E}_{a}}{\mathcal{E}_{a}} \frac{\mathcal{E}_{a}}{\mathcal{E}_{a}} \frac{\mathcal{E}_{a}}{\mathcal{E}}} \frac{\mathcal{E}_{a}}{\mathcal{E}} \frac{\mathcal{E}_{a}}{\mathcal{E}} \frac{\mathcal{E}_{a}}{\mathcal{E}}} \frac{\mathcal{E}_{a}}{\mathcal{E}} \frac{\mathcal{E}_{a}}{\mathcal{E}}} \frac{\mathcal{E}_{a}}{\mathcal{E}}}{\mathcal{E}} \frac{\mathcal{E}_{a}}{\mathcal{E}}} \frac{\mathcal{E}_{a}}{\mathcal{E}}} \frac{\mathcal{E}_{a}}{\mathcal{E}}} \frac{\mathcal{E}_{a}}{\mathcal{E}}} \frac{\mathcal{E}_{a}}{\mathcal{E}}} \frac{\mathcal{E}_{a}}{\mathcal{E}}} \frac{\mathcal{E}_{a}}{\mathcal{E}}}{\mathcal{E}}} \frac{\mathcal{E}_{a}}{\mathcal{E}}} \frac{\mathcal{E}_{a}}{\mathcal{E}}} \frac{\mathcal{E}_{a}}{\mathcal{E}}} \frac{\mathcal{E}_{a}}{\mathcal{E}}} \mathcal{E}}{\mathcal{E}}} \frac{\mathcal{E}_{a}}{\mathcal{E}}} \frac{\mathcal{E}_{a}}{\mathcal{E}}} \mathcal{E}} \frac{\mathcal{E}}}{\mathcal{E}}} \mathcal{E}} \frac{\mathcal{E}}{\mathcal{E$$

Enclosure Userilication
In closed (86.2)
Internal pressure (articul, Grip:
Grip:
$$\pm 0.12$$
 (Figure 6-5)
Second Pressure (articul, Gp or 65 Ge (Figure 0.65 + 62)
Mind Pressure (articul, Gp or 65 Ge (Figure 0.65 + 62)
Mind on M-S Direction,
- Windward: Gp = 0.3
- Leenard: $\frac{1}{8} = \frac{905}{9552} = 0.76 \Rightarrow Cp = -0.5$
- Side : $(p = -0.7)$.
Wind in E-W Direction.
- Windward: $Gp = 0.7$
- Side : $(p = -0.7)$.
Wind in E-W Direction.
- Windward: $fp = 0.7$
- Side : $(p = -0.7)$.
Wind in E-W Direction.
- Side : $(p = -0.7)$.
 $\frac{2-1}{-05x057} = \frac{2-135}{-0.5-x} + x = -0.436 \Rightarrow (p = -0.436)$
- Side : $(p = -0.7)$.

Runt	Processo (anticione	+ 10
· * 4550	uned the roof is	Alat (Figure 6-6)
w	nd in N-S P	inetion
t t	$\frac{1}{2} = \frac{80.94}{190.54} = 0.42$	±0.5
+	torizontal Distance roms Windward Eclye	4
	0' to 40'	-0.9, -0.8
	40' to 80'	-Q9, -0.18
	80' to 160'	- 05, -0.18
	160' to 1925'	- 0.3, -0.18
	1 5 11 5	
- Win	in E-W Dines	<u>ctan</u>
<u>P</u> L	$L = \frac{80}{352} \frac{4}{4} = 0.317 \leq$	0.5
H t	prizontal Distance rorm Windhard Edge	Ср
	0'to 40'	-09,-08
	40' to 80'	61.0-, 9.0-
	KD' to 160'	-0.5, -0.18
	160' +0 252'	-0.3,-0.18

$$\frac{Velocity}{k_2 = 2.01 (2/25)} \frac{1}{2} \frac{1}{$$

Equations	Constants	
$Kz = 2.01 (z/z g)^{(2/\alpha)}$	Kzt	1
qz = 0.00256*kz*kzt*kd*V^2*I	Kd	0.85
p = q*Gf*Cp - qi(GCpi)	v	90
	1	1.15
	h	80 ft
	G (N-S)	0.85
	G (E-W)	0.85
	(GCpi)	

Calcualting Kz and qz

Floor	Height above					
	ground (z)	Z g (ft)	α	k z	qz	qh
Top of Parapet	85.00	1200.00	7.00	0.94	19.12	18.79
Top of 4th Floor	75.00	1200.00	7.00	0.91	18.45	18.79
4th Floor	61.00	1200.00	7.00	0.86	17.39	18.79
3rd Floor	46.33	1200.00	7.00	0.79	16.08	18.79
2nd Floor	31.67	1200.00	7.00	0.71	14.42	18.79
1st Floor	17.00	1200.00	7.00	0.60	12.07	18.79
Lower A	0.00	1200.00	7.00	0.00	12.07	18.79

Cp, Roof N-S Direction										
0 to 40	ft	40 to 80 ft	80 to 160 ft	160 to 190.5 ft						
	-0.9	-0.9	-0.5	-0.3						
Cp, Roof	E-W	Direction								
0 to 40	ft	40 to 80 ft	80 to 160 ft	160 to 252 ft						
	-0.9	-0.9	-0.5	-0.3						

Constants	
Kzt	1
Kd	0.85
v	90
h i	1.15
h	80 ft
G (N-S)	0.85
G (E-W)	0.85
(GCpi)	0.18

Wind Pressure - Roof North - South Direction									
Location	Ср	G	qh	Pressure					
on Roof			(psf)	(psf)					
0 to 40 ft	-0.9	0.85	1515.37	-1159.26					
40 to 80 ft	-0.9	0.85	1515.37	-1159.26					
80 to 160 ft	-0.5	0.85	1515.37	-644.03					
160 to 190.5 ft	-0.3	0.85	1515.37	-386.42					
Wind Pressure -	Roof East -	West Directio	n						
Location	Ср	G	qh	Pressure					
on Roof			(psf)	(psf)					
0 to 40 ft	-0.9	0.85	1515.37	-1159.26					
40 to 80 ft	-0.9	0.85	1515.37	-1159.26					
80 to 160 ft	-0.5	0.85	1515.37	-644.03					
160 to 252.6	0.0	0.05	4545 33	200 42					

Wall N-S Direction	
Cp, Windward	0.8
Cp, Leeward	-0.5
L	190.5 ft
в	252 ft
L/B	0.756
Kzt	1
Kd	0.85
v	90
1	1.15
h	80 ft
G (N-S)	0.85
G (E-W)	0.85
(GCpi)	0.18

Wind Pressure - Wall | North - South Direction

Floor	Height	qz	qh	Windward	Leeward	Tributary	Tributary	Force	Story	Overturning
	above Ground, z (ft)	(psf)	(psf)	(psf)	(psf)	Height (ft)	Area (sq-ft)	(k)	Shear (k)	Moment (ft-k)
Top of Parapet	85.00	19.12	18.79	16.39	-4.60	5.00	1260.00	26.45	26.45	
Top of 4th Floor	75.00	18.45	18.79	15.93	-4.60	12.00	3024.00	62.09	88.54	4657.00
4th Floor	61.00	17.39	18.79	15.21	-4.60	14.33	3612.00	71.57	160.11	4365.73
3rd Floor	46.33	16.08	18.79	14.32	-4.60	14.67	3696.00	69.93	230.04	3240.11
2nd Floor	31.67	14.42	18.79	13.19	-4.60	14.67	3696.00	65.77	295.81	2082.61
1st Floor	17.00	12.07	18.79	11.59	-4.60	15.83	3990.00	64.63	360.43	1098.66
Lower A	0.00	12.07	18.79	11.59	-4.60	8.50	2142.00	34.69	395.13	0.00
										15444.11
Base Shear (k)		395.13								
Total Overturnin	g Moment (ft-k)	15444.11								

Wall | E-W Direction

Cp, Windward	0.8
Cp, Leeward	-0.436
L	252 ft
в	190.5 ft
L/B	1.323
Kzt	1
Kd	0.85
v	90
1	1.15
h	80 ft
G (N-S)	0.85
G (E-W)	0.85
(GCpi)	0.18

Wind Pressure - Wall | East - West Direction

Floor	Height	qz	qh	Windward	Leeward	Tributary	Tributary	Force	Story	Overturning
	above Ground, z (ft)	(psf)	(psf)	(psf)	(psf)	Height (ft)	Area (sq-ft)	(k)	Shear (k)	Moment (ft-k)
Top of Parapet	85.00	19.12	18.79	16.39	-3.58	5.00	952.50	19.02	19.02	
Top of 4th Floor	75.00	18.45	18.79	15.93	-3.58	12.00	2286.00	44.60	63.62	3345.19
4th Floor	61.00	17.39	18.79	15.21	-3.58	14.33	2730.50	51.31	114.93	3130.00
3rd Floor	46.33	16.08	18.79	14.32	-3.58	14.67	2794.00	50.01	164.94	2317.02
2nd Floor	31.67	14.42	18.79	13.19	-3.58	14.67	2794.00	46.86	211.80	1483.90
1st Floor	17.00	12.07	18.79	11.59	-3.58	15.83	3016.25	45.77	257.57	778.11
Lower A	0.00	12.07	18.79	11.59	-3.58	8.50	1619.25	24.57	282.14	0.00
										11054.21
Base Shear		282.14	kips							
Total Overturnin	g Moment	11054.21	ft-kips							

SEISMIC LOADS

• Analysis Procedure

$$\Rightarrow$$
 Equivalent baland Force Procedure (TABLE D.6-1)
• Response Multiflication Factor
Steel System not specifically detailed for
spismic resistance.
 $R = 3$.
• Approximate Fundamental Period
 $T_0 = C4 \cdot hn^4$
 $L4 = 0.02$
 $x = 0.75$
 $h = 91$
 $T_0 = (0.02)(0/)^{0.75}$
 $= 0.5893 \text{ sec.}$
• Long Term Transition Restands Tim
 $T_0 = 6 \text{ sec}$
• Scisoric Response Coefficients Ca
 $(G_{\pm}) = (\frac{-2384}{(1.55)})$
 $T_0 = 0.5893 \text{ sec.} < 1.6022$
 $(G_{\pm}) = (0.2844_{-1}) = 0.1402$
 $(G_{\pm}) = (0.2844_{-1}) = 0.1402$
 $(G_{\pm}) = (0.2844_{-1}) = 0.1402$
 $C_0 = Sec < 1.56843 \text{ sec.} < 1.65843$
 $C_0 = Sec < 1.56843 \text{ sec.} < 1.65843$
 $C_0 = (S_{\pm}) = (0.5894) = 0.09399$
 $C_0 = (S_{\pm}) = (0.0939) = (0.0939) > 0.011.0K.$

Floor	Dead	Partition	Total Weight	Floor Area	Weights
	Load (psf)	Load (psf)	(psf)	(sq ft)	(kips)
Penthouse Roof	48.71	0.00	48.71	31110.03	1515.37
4th Floor	108.00	20.00	128.00	19002.68	2432.34
Greenhouse Floor	198.75	20.00	218.75	6777.45	1482.57
3rd Floor	108.00	20.00	128.00	33428.03	4278.79
2nd Floor	108.00	20.00	128.00	37249.15	4767.89
1st Floor	108.00	20.00	128.00	37249.15	4767.89
				Total Weight	19244.85

Story Forces

Floor	hi	h	w	w*h^k	Cvx	Story Forces
	(ft)	(ft)	(kips)			Fi (kips)
Penthouse Roof	10.00	85.00	1515.37	950990.11	0.19	349.44
4th Floor	14.00	75.00	2432.34	1273103.34	0.26	467.79
Greenhouse Floor	14.67	61.00	1482.57	575099.04	0.12	211.32
3rd Floor	14.67	46.33	4278.79	1113951.79	0.23	409.32
2nd Floor	14.67	31.67	4767.89	714825.02	0.15	262.66
1st Floor	17.00	17.00	4767.89	290052.94	0.06	106.58
Total			19244.85	4918022.24	Base Shear	1807.10

	Seismic Loading vs. Height on the building.	
9		
	349.44 K	
	467.79 K-	1
	211.32 K	141-92
	4 09. 32 K	14-80
	262.66 K	14-8-
	106.58 K	17'
		1807-10 kips.